

Interstellar Travel by Means of Wormhole Induction Propulsion (WHIP)

Eric W. Davis, Ph.D.

National Institute for Discovery Science

1515 E. Tropicana Ave., Suite 400

Las Vegas, Nevada

Voice (702) 798-1700, FAX (702) 798-1970

E-mail: nids@anv.net

Abstract

> Space flight by means of wormholes is described whereby the traditional rocket propulsion approach can be abandoned in favor of a new paradigm involving the manipulation of spacetime. Maccone (1995) extended Levi-Civita's 1917 magnetic gravity solution to the Morris and Thorne (1988) wormhole solution and claimed that static homogeneous magnetic/electric fields can create spacetime curvature manifesting itself as a traversable wormhole. Furthermore, Maccone showed that the speed of light through this curvature region is slowed by the magnetic (or electric) induced gravitational field there. Maccone's analysis immediately suggests a way to perform laboratory experiments whereby one could apply a powerful static homogeneous magnetic field in a vacuum, thereby creating spacetime curvature, and measure the speed of a light beam through it. Magnetic fields employed in this scenario must achieve magnitudes $> 10^{10}$ Tesla in order for measurable effects to appear. Current magnetic induction technology is limited to static fields of \sim several x 10³ Tesla. However, destructive chemical (implosive/explosive) magnetic field generation technology has reached peak rate-of-rise field strengths of $\sim 10^9$ Tesla/sec. It is proposed that this technology be exploited to take advantage of the high rate-of-rise field strengths to create and measure spacetime curvature in the lab.

Introduction

- ➤ Conventional rocket propulsion is constrained by limiting specific impulse, speed, energy conversion & large fuel mass fractions.
- ➤ Rapid interplanetary and interstellar flight by means of wormholes is possible, in principle, via spacetime manipulation.
- Speed of light is circumvented, spacecraft no longer carry large propellant mass, travel time over large distances reduced by orders of magnitude.
- Spacetime manipulation accomplished by linking magnetic fields
 & gravity thru general relativity.

- ➤ Einstein published General Relativity Theory (GTR) in 1915.
- ➤ Levi-Civita (1917) introduces creation of artificial gravity field (spacetime curvature) by virtue of static homogeneous magnetic/ electric fields as a GTR solution.
- ➤ Morris & Thorne (1988) derive GTR solution for spacetime wormholes.
- ➤ Maccone (1995) extended Levi-Civita's magnetic gravity metric to Morris & Thorne's metric and claimed that static homogeneous magnetic fields can induce wormhole effect in spacetime.

Theoretical Brief

Levi-Civita's spacetime metric in cylindrically symmetric magnetic field:

$$ds^{2} = (dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2} + \frac{(x^{1}dx^{1} + x^{2}dx^{2})^{2}}{a^{2} - [(x^{1})^{2} + (x^{2})^{2}]} - \left[c_{1} \exp\left(\frac{x^{3}}{a}\right) + c_{2} \exp\left(\frac{-x^{3}}{a}\right)\right]^{2} (dx^{4})^{2}$$

where $c_1 \& c_2$ are integration constants determined by boundary conditions and $x^1 \dots x^4$ are Cartesian coordinates with orthographic projection, and

$$a = \frac{c^2}{\sqrt{\frac{4pG}{n_0}}} = 3.4840x10^{+18} \frac{1}{B}$$
 meters is the radius of spacetime curvature $\{G = gravitational\ constant, c = speed\ of\ light,$

 $B = magnetic \ field \ strength \ in \ Tesla$, $\mathbf{m} = vacuum \ permeability - all \ in \ mks \ units$

• Maccone derived the "speed of light function" from coefficient of dx^4 term:

$$v(z) = c \frac{2 \exp(\frac{L}{2a})}{\exp(\frac{L}{a}) + 1} \cosh(\frac{z}{a})$$
 m/sec where L is assumed to be length of a long magnetic solenoid, centered around $x^3 = z$ axis.

• Wormhole is created by the solenoid, and at center of its throat v(z=0) is:

$$v(0) = c \frac{2 \exp(\frac{L}{2a})}{\exp(\frac{L}{a}) + 1} = 2c \frac{\exp(\frac{LB}{2K})}{\exp(\frac{LB}{K}) + 1} \quad m \text{ / sec} \qquad 0 < L << a, \quad K = \frac{c^2}{\sqrt{\frac{4\mu G}{R}}} = 3.4840 \times 10^{+18} \text{ Tesla} \bullet \text{meter}$$

• Invert v(0) and solve for B: $B = \frac{2K}{L} \ln \left[\frac{c \pm \sqrt{c^2 - v^2(0)}}{v(0)} \right]$ Tesla

Levi-Civita's Metric Does Not Give A Wormhole!

$$ds^{2} = -\left[c_{1} \exp\left(\frac{z}{a}\right) + c_{2} \exp\left(\frac{-z}{a}\right)\right]^{2} dt^{2} + \left(1 - \frac{r^{2}}{a^{2}}\right)^{-1} dr^{2} + r^{2} d\mathbf{j}^{2} + dz^{2}$$

$$ds^{2} = -\left[c_{1} \exp\left(\frac{z}{a}\right) + c_{2} \exp\left(\frac{-z}{a}\right)\right]^{2} dt^{2} + a^{2} \left[d\mathbf{q}^{2} + \sin^{2} \mathbf{q} d\mathbf{j}^{2}\right] + dz^{2}$$

$$a = \frac{c^{2}}{B} \left(\frac{4\mathbf{p}G}{\mathbf{m}_{0}}\right)^{-\frac{1}{2}} = 3.4840 \ x \cdot 10^{18} \ B^{-1} \text{ is the radius of curvature}$$

$$d\mathbf{S}^{2} = a^{2} \left[d\mathbf{q}^{2} + \sin^{2} \mathbf{q} d\mathbf{j}^{2}\right] + dz^{2} \text{ is the hypercylinder 3-metric } S^{2} x \mathbf{\hat{A}}$$

Radius of Spacetime Curvature Induced by B-Field

B (x 3.484 Tesla)	a (meters)
1	$10^{18} \ (105.7 \ ly)$
10^2	$10^{16} (1.06 ly)$
10^3	$10^{15} (0.11 ly)$
10^5	$10^{13} \ (66.7 AU)$
10^7	$10^{11} (0.67 AU)$
10 ⁹	10 ⁹ (1.44 <i>Solar Radii</i>)
10^{12}	10 ⁶ (0.16 <i>Earth Radii</i>)
10^{15}	10^3
10^{18}	1

B = magnetic field strength

a = radius of spacetime curvature

ly = light-year

AU = Astronomical Unit

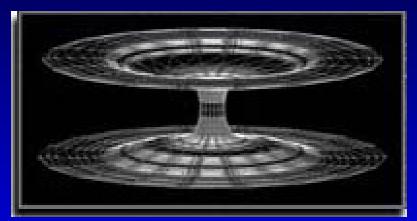
Wormhole Throat Size (b) Induced by Applied Tension (t)

<i>b</i> (<i>m</i>)	$t(x 5.0 N/m^2)$
$10^{18} (105.7 ly)$	10^6
$10^{16} \ (1.06 \ ly)$	10^{10}
$10^{15} (0.11 ly)$	10^{12}
$10^{13} (66.7 AU)$	10^{16}
$10^{11} \ (0.67 AU)$	10^{20}
10 ⁹ (1.44 <i>Solar Radii</i>)	10^{24}
10 ⁶ (0.16 <i>Earth Radii</i>)	10^{30}
10^3	10^{36}
1	10^{42}

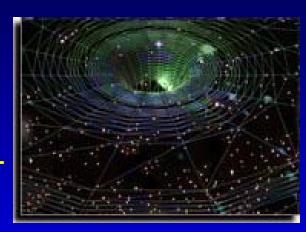
Experimental Approach

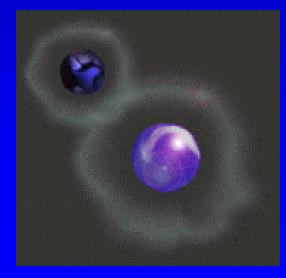
- > v(0) indicates that light speed slows down in localized region because of artificially induced gravity (space curvature) there.
- Maccone suggests measuring the slowing of light speed inside a large magnetic solenoid; achievable precision in measuring this would be c v(0) or $c^2 v^2(0)$.
- Experiments will need B-fields ³
 10¹⁰ Tesla to produce measurable effects. (Electric field intensity will be 17 times larger to produce the same radius of curvature).
- Experiments using chemical explosive/implosive magnetic technologies look promising.

- ➤ Russian designed MC-1 generator produces 10³ Tesla with very good homogeneity and reliability, ISTC grant to build 2,000 Tesla generator.
- ➤ LANL/NHMFL/SNL high B-field generators (ATLAS, SATURN).
- ➤ Length of homogeneous field is ~ 10 cm, peak rate-of-rise of field is ~ 10⁹ Tesla/sec, only a few nanosecs is spent at 10³ Tesla which is long enough for good measurement of c (to a part in 10² or 10³ with picosecond pulses).
- Exploit peak rate-of-rise of field? Experiments using nuclear explosives/implosives to generate ultrahigh B-fields (~ 10⁹ Tesla)?

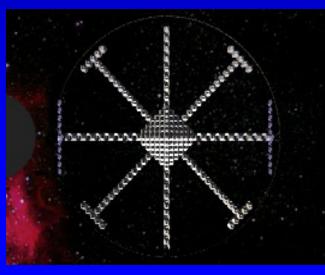


Magnetic Field Generation Technologies


Magnetic Field Strength (Tesla)	Field Generation Technology
10 - 300	Superconductivity, Hybrid Magnets and Pulsed Magnets
360	Magnetic flux compression by electromagnetic force
400	One-turn coil connected to strong laser produced plasma
$\sim 10^3$	High powered pulsed lasers
1000 - 3000	Magnetic flux compression by chemical explosion/implosion
$10^2 - 10^5$	White Dwarf stars
$10^7 - 10^9$	Neutron stars
3 10 ⁹	Magnetic flux compression by nuclear explosion/implosion



WHIP Spacecraft Concept



Left and right figures depict the Morris & Thorne wormhole which uses exotic matterenergy.

WHIP spacecraft (r) deploys ultrahigh B-field to generate hypercylinder curvature envelope to stress space into wormhole configuration. Exotic matter-energy field is applied in small region to create the traversable throat which is patched to the hypercylinder space (l).

Conclusion

- ➤ Maccone's analysis is correct with respect to inducing spacetime curvature and slowing of light via ultrahigh magnetic or electric fields.
- Maccone's interpretation of Levi-Civita's metric is incorrect as this really describes a hypercylinder with a position dependent gravitational potential.
- There is no asymptotically flat external space, no flared-out wormhole mouth and no throat.
- Radial magnetic or electric fields are borderline exotic, but create wormholes in different geometry.
- There are other exotic matterenergy fields to choose from!

- ➤ A lab experiment whereby a hypercylinder curvature effect is created by virtue of ultrahigh B-fields has excellent potential for breakthrough propulsion.
- ➤ A measure of the slowing of light speed (c) in this scenario would verify this effect.
- ➤ Recommend using chemical explosive/implosive B-field technologies, exploit ultrahigh peak rate-of-rise of field (10⁹ Tesla/s).
- Fields > $10^9 10^{10}$ Tesla needed to affect measurable slowing of c.
- B-field technologies based on nuclear explosives/implosives need to be considered to achieve large magnitude results.