Elektromanyetik tayf

 

Elekromanyetik spektrum ve bazı ışınım (radyasyon) türlerinin tayf üzerindeki yaklaşık yerlerini gösterir ilüstrasyon. İnsan gözünün algılayabildiği tek radyasyon tipi olan görünür ışık elektromanyetik tayfta çok ince bir aralık bandında bulunmaktadır.

Elektromanyetik tayf veya elektromanyetik spektrum (EMS), evrenin herhangi bir yerinde fizik kurallarınca mümkün kılınan tüm elektromanyetik radyasyonu ve farklı ışınım türevlerinin dalga boyları veya frekanslarına göre bu tayftaki rölatif yerlerini ifade eden kavramdır. Herhangi bir cismin elektromanyetik tayfı veya spektrumu, o cisim tarafından çevresine yayılan karakteristik net elektromanyetik radyasyonu tabir eder.

Elektromanyetik tayf, dalga boylarına göre atomaltı değerlerden başlayıp (bkz. Gama ışını veya X-ışını) binlerce kilometre uzunlukta olabilecek radyo dalgalarına kadar birçok farklı radyasyon tipini içerir. Elektromanyetik tayf teoride sonsuz ve sürekli olsa da, pratikte kısa dalga boyu (yüksek frekans) ucunun limitinin Planck uzunluğuna, uzun dalga boyu (alçak frekans) ucunun limitinin ise evrenin tümünün fiziksel büyüklüğüne eşit olduğu düşünülmektedir.

 

İçindekiler

 


Genişliği

Elektromanyetik tayf binlerce kilometreden atomaltı uzunluklara kadar geniş bir yelpazedeki dalga boylarında ışınımları kapsar. 30 Hz ve altındaki frekansların (uzun-dalga) radyoastronomide bazı nebulalar tarafından üretildiği ve bu yapıların araştırılmasında kullanıldığı, 2,9 * 1027 Hz değeri civarında frekanslara sahip ışınımların da çeşitli kozmik kaynaklardan yayıldığı bilinmektedir.


Boşlukta, belirli bir dalga boyundaki (λ) elektromanyetik enerjinin bu dalga boyu ile orantılı bir frekansı (f) ve foton enerjisi (E) bulunmaktadır. Bu yüzden elektromanyetik tayf bu üç değerden herhangi biri kullanılarak ifade edilebilir. Değerler birbirine aşağıdaki formüller ile bağlıdır:


frekans x dalga boyu veya , ve veya

Burada; m/s (ışık hızı) ve de Planck sabiti 'dir.

Buna göre;

  • Yüksek frekanslı elektromanyetik dalgalar yüksek enerjiye ancak kısa dalga boyuna,
  • Düşük frekanslı elektromanyetik dalgalar ise düşük enerjiye ancak uzun dalga boyuna

sahiptirler. Görünür ışık veya başka bir elektromanyetik türü belli bir madde içerisinde yaratılır veya içerisinden geçerse (örneğin atmosfer), bu ışınımın dalga boyu artacak, dolayısıyla frekansı düşecektir. Bu değişiklikten dolayı, ışınımların elektromanyetik tayf değerleri ile ilgili rakamsal bilgiler verilirken genellikle söz konusu ışınımlar uzaydaki (boşluk) sayısal değerleri ile ifade edilir.
Spektroskopi ile insan gözünün algılayabildiği 400 ile 700 nm'lik dalga boyları arasındaki görünür ışık bandı dışındaki diğer ışınım aralıkları da algılanabilir. Normal bir laboratuvar spektroskobu 2 ile 2500 nm arasındaki dalga boylarını kolayca algılayabilir. Cisimlerin, gazların ve hatta yıldız ve galaksilerin fiziksel özellikleri ile ilgili birçok veri, bunlardan yayılan elektromanyetik ışınımın bir spektroskop yardımıyla analiz edilerek öğrenilebilir. Örneğin hidrojen atomları 21,12 cm'lik dalga boyunda spesifik bir radyo dalgası yayar. Söz konusu ışınım algılandığında, mesela uzak bir gezegenin atmosferinde hidrojen gazı da bulunduğu anlaşılabilir. Bu, teknik astrofizik araştırmalarda yaygın olarak kullanılmaktadır.
Elektromanyetik radyasyon başlıca yedi kategoride incelenir. Bunlar düşük frekanstan yüksek frekansa doğru radyo dalgaları, mikrodalga, kızıl ötesi, görünür ışık, mor ötesi, X-ışınları ve Gama ışınlarıdır.


Tayf kategorileri.

Yukarıda verilen sınıflandırma genelde doğru olsa da, söz konusu kategoriler arasında kesin sınır çizgileri yoktur ve bazı durumlarda aslında belirli bir kategoride yer alan bir ışınım, bir başka kategorinin dalga boyu aralığında bulunabilir. Örneğin, bazı az enerjili gama ışınları aslında bazı yüksek enerjili X-ışınlarından daha uzun dalga boyuna sahiptir. Bunun sebebi, "gama ışını" teriminin nükleer bozunum veya başka bir atomaltı işlem sonucu oluşan fotonlar için kullanılırken X-ışınlarının atom çekirdeğine yakın yüksek enerjili iç elektronların orbital değişimleri sonucu oluşmasıdır. Sonuç itibarıyla X-ışınları ile gama ışınları arasındaki belirleyici fark dalga boylarında değil, söz konusu ışınımları yaratan kaynaklardadır. Ancak gama ışınları genellikle X-ışınlarından daha yüksek frekanslı ve dolayısıyla daha yüksek enerjilidir ve bu yüzden kendi kategorilerinde değerlendirilir.

Başlıca elektromanyetik tayf bantları ve yaklaşık sayısal değerleri:


 Sınıf   Frekans (f)       Dalga boyu (λ)   Enerji (E)           Açıklama
Y       300 EHz - 30 EHz  1 pm - 10 pm    1,24 MeV - 124 keV   Gama ışınları
HX      30 EHz - 3 EHz    10 pm - 100 pm  124 keV - 12,4 keV   Sert X-ışınları
SX      3 EHz - 30 PHz    100 pm - 10 nm  12,4 keV - 124 eV    Yumuşak X-ışınları
EUV     30 PHz - 3 PHz    10 nm - 100 nm  124 eV - 12,4 eV     Uzak mor ötesi 
NUV     3 PHz - 300 THz   100 nm - 1 μm   12,4 eV - 1,24 eV    Yakın mor ötesi
VIS*                                                           Görünür ışık aralığı*
NIR     300 THz - 30 THz  1 μm - 10 μm    1,24 eV - 124 meV    Yakın kızıl ötesi 
MIR     30 THz - 3 THz    10 μm - 100 μm  124 meV - 12,4 meV   Orta kızıl ötesi 
FIR     3 THz - 300 GHz   100 μm - 1 mm   12,4 meV - 1,24 meV  Uzak kızıl ötesi
EHF     300 GHz - 30 GHz  1 mm - 1 cm     1,24 meV - 124 μeV   Aşırı yüksek frekans 
SHF     30 GHz - 3 GHz    1 cm - 1 dm     124 μeV - 12,4 μeV   Süper yüksek frekans 
UHF     3 GHz - 300 MHz   1 dm - 1 m      12,4 μeV - 1,24 μeV  Ultra yüksek frekans 
VHF     300 MHz - 30 MHz  1 m - 10 m      1,24 μeV - 124 neV   Çok yüksek frekans 
HF      30 MHz - 3 MHz    10 m - 100 m    124 neV - 12,4 neV   Yüksek frekans 
MF      3 MHz - 300 kHz   100 m - 1 km    12,4 neV - 1,24 neV  Orta frekans 
LF      300 kHz - 30 kHz  1 km - 10 km    1,24 neV - 124 peV   Alçak frekans
VLF     30 kHz - 3 kHz    10 km - 100 km  124 peV - 12,4 peV   Çok alçak frekans
VF/ULF  3 kHz - 300 Hz    100 km - 1 Mm   12,4 peV - 1,24 peV  Ses frekansı
SLF     300 Hz - 30 Hz    1 Mm - 10 Mm    1,24 peV - 124 feV   Süper alçak frekans
ELF     30 Hz - 3 Hz      10 Mm - 100 Mm  124 feV - 12,4 feV   Aşırı alçak frekans

Radyo dalgaları

Radyo dalgaları el telsizlerinden gelişmiş uzay haberleşme sistemlerine kadar birçok platform tarafından kullanılmaktadır.

Radyo dalgaları binlerce kilometreden yaklaşık bir milimetreye kadar dalga boylarındadır ve sahip oldukları rezonansa uygun antenler ve modülasyon teknikleri kullanarak analog veya sayısal veri aktarımı kanalları olarak değerlendirilebilirler. Televizyon, cep telefonu, MRI, kablosuz bilgisayar ağları ve benzeri uygulamalar radyo dalgalarını kullanır.

Radyo dalgalarının veri taşıma özellikleri dalga yüksekliği, frekans ve faz belirli bir bant aralığında modüle edilerek belirlenir. Elektromanyetik spektrumun bu bölümünün kullanımı birçok ülkede çeşitli resmî kuruluşlar tarafından kısıtlanmakta ve denetlenmektedir. Elektromanyetik radyasyon bir iletkene empoze edildiğinde, iletkenin yüzeyindeki atomların elektronlarını daha enerjik kılarak iletken yüzeyinde küçük bir elektrik akımı oluşmasını sağlar. Radyo antenlerinin çalışma ilkesi bu etkiye dayanır.
 

Mikrodalga

Mikrodalgalar tipik olarak uygun çap ve şekilde metal dalga kılavuzu tüpler kullanabilecek kadar kısadırlar ve magnetron veya klistron tüpler kullanarak istenen faz ve frekansta üretilebilirler. Mikrodalga üretimi TED ve IMPATT gibi katı yapılı diyotlar kullanılarak da yapılabilir. Çeşitli frekanslardaki mikrodalga enerjisi bazı materyaller tarafından emilebilir ve bu süreç sonucunda ısı açığa çıkar. Mikrodalga fırınlar su moleküllerinin bu özelliğini kullanır. Wi-Fi gibi kablosuz sinyal aktarımında da düşük yoğunluklu mikrodalga kullanılır. Mikrodalga fırınlar bu yüzden çalışır durumda ve yeterince yakın mesafede olduklarında cep telefonu ve diğer bazı elektronik cihazları etkileyebilirler.

Terahertz ışınım

Terahertz (THz) radyasyon, elektromanyetik tayfta uzak kızıl ötesi ile mikrodalgalar arasındaki frekans bandında bulunur. Yakın zamana kadar spektrumun bu bölgesi büyük oranda ihmal edilmişti ancak günümüzde bu milimetre altı bant özellikle haberleşme, doku gösterimi ve savunma teknolojilerinde kullanılmaktadır. Bu bandın askerî amaçlı uygulaması şimdilik düşman askerleri üzerine yansıtılan terahertz ışınımı suretiyle derilerinde yanma hissi yaratarak bu tehditleri etkisizleştirme uygulaması ile sınırlıdır. Aynı ışınım söz konusu hedeflerin elektronik ekipmanını da iş göremez hâle getirecektir.
Terahertz bandı elektromanyetik tayfta uzak kızılötesi ile mikrodalgalar arasındaki frekans bandında bulunur. T-ışınları, T-dalgaları, T-ışık, T-lux, THz olarak da adlandırılmaktadır.
Alt ve üst limitlerinin kesin değerleri olmamakla birlikte, 300 gigahertz ile 3 terahertz arasında dalga boyuna sahip elektromanyetik ışınımı tanımlamak için kullanılır. Dalga boylarında, bu aralık 1,0 mm mikrodalga, kızılötesi 0,1 mm'ye (veya 100 um) karşılık gelir. THz bant, elektromanyetik fiziği iyi olan dalga benzeri özellikleri (mikrodalga) ve parçacık benzeri özellikler (kızılötesi) tarafından tarif edilebilir.
 

 

Kızıl ötesi ışınım

Kızıl ötesi radyasyon yaklaşık olarak 300 GHz ile 400 THz frekansları ve 1 mm ile 750 nm arasındaki dalga boylarını kapsar. Üç ana kategoride incelenir:

  • Uzak kızıl ötesi, 300 GHz (1 mm λ) ile 30 THz (10 μm λ) arasındadır. Bu bandın alt bölümleri için mikrodalga da denilebilir. Bu radyasyon tipik olarak spin yapan gaz molekülleri, sıvılarda moleküler akışkanlık ve katılarda fotonlar tarafından emilir. Dünyanın atmosferindeki yaklaşık %1 su buharı tarafından emilen uzak kızıl ötesi ışınım, atmosferin saydam olmasında büyük rol oynamaktadır. Astronomide 200 μm ile birkaç mm arasındaki dalga boylarına genellikle milimetre altı denir ve "uzak kızıl ötesi" tanımı 200 μm'nin altındaki dalga boyları tarafından kullanılır.

Atmosferin hangi dalga boylarını geçirip hangilerini bloke ettiğini özetler bir ilüstrasyon.

  • Orta kızıl ötesi, 30 THz (10 μm λ) ile 120 THz (2,5 μm λ) arasında bulunur. Sıcak cisimler bu sıklıkla bu aralıkta ışınım yayarlar. Orta kızıl ötesi ışınım normal moleküler titreşim tarafından emilebilir. Bu frekans aralığına bazen parmak izi bandı da denir.
  • Yakın kızıl ötesi, 120 THz (2500 nm λ) ile 400 THz (750 nm λ) arasındadır. Görünür ışığa benzer fiziksel işlemler tarafından üretilir ve benzer optik kurallara tabidir.

Görünür ışık

İnsan gözünün ışık veya renk olarak algıladığı aralığa denk gelen elektromanyetik enerjidir. Beyaz ışık bir prizmadan geçirildiğinde bileşenleri olan diğer dalga boylarına ayrılabilir. Her dalgaboyu farklı bir frekansa sahiptir ve göz tarafından farklı bir renk olarak algılanır.

Mor ötesi ışınım

Dalga boyu görünür ışıktan daha kısadır. Oldukça enerjik olduğu için mor ötesi (UV) ışınım kimyasal bağları bozup çeşitli molekülleri iyonize edebilir veya katalizör etkisi gösterebilir. Güneş yanıkları mor ötesi radyasyonun insan derisi üzerindeki yıkıcı etkisine örnek olarak verilebilir. Bazı durumlarda kanserojen etki yapabilir. UV ışınım ayrıca etkin bir mutajendir ve hücrelerin DNA yapısını bozarak kontrolsüz mutasyona sebep olabilir. Dünya'ya Güneş'ten gelen UV radyasyonunun büyük bir kısmı yüzeye ulaşmadan önce atmosferdeki ozon tabakası tarafından emilir.

X-ışınları

X-ışınları, mor ötesi ışınlardan daha kısa dalga boyuna, dolayısıyla daha yüksek frekans ve enerjiye sahiptir. Çeşitli materyallerin içinden geçebildikleri için tıpta organ ve kemiklerin görüntülenmesinde sıkça kullanıldığı gibi, ayrıca yüksek-enerji fizik ve gökbilim uygulamalarında da kullanım alanı bulmuştur. X-ışınlarının bir başka adı Röntgen ışınlarıdır.

Gama ışınları

Gama ışınları 1900 yılında Villiard tarafından bulunmuştur. Bilinen en enerjik elektromanyetik radyasyon türü olan gama ışınları nükleer aktivite ve çeşitli kozmik kaynaklar tarafından üretilirler.

 

Aşırı yüksek frekans

 

Aşırı yüksek frekans (İngilizce: Extremely high frequency), EHF en yüksek radyo frekans bandıdır. EHF 30 ila 300 gigahertz aralığında bir frekanstır. Bu bandın dalga boyu 1 ila 10 milimetre olduğundan milimetre bandı veya milimetre dalgası olarak da isimlendirilip, MMV veya mmW olarak kısaltılır.

Düşük dalga boylu bantlarla kıyaslandığında, bu banttaki karasal radyo sinyalleri atmosferik ortamda zayıflaması aşırı eğimli olduğundan uzun mesafelerde kullanımı çok azdır. Özellikle 57 ile 64 Ghz arası frekansların havadaki oksijen moleküllerinden dolayı rezonansa uğrar ve genellikle zayıflar.

  • 60GHz bandında WPAN uygulaması: henüz araştırma aşamasındaki bu bantta birkaç Gb/s hızında kablosuz ev içi iletişim olanağı mevcuttur. Bu hıza ileride HDTV (High Definition - yüksek çözünürlüklü TV) uygulamalarında ihtiyaç duyulacaktır.
  • 77GHz Otomobil RADARI: Çarpışma önleyici Radar sistemlerinden bazıları bu frekansta çalışmaktadır.
  • >100GHz görüntüleme sistemleri: Bir duvarın arkasını görüntüleme veya elbiselerin altını görüntüleme vb. türü sistemler bu frekanslarda çalışmaktadır.

Mikrodalga

Mikrodalga 1 metre ile 1 milimetre arasında değişen dalga boyları ile bir elektromanyetik radyasyon biçimidir. 300 MHz (100 cm) ve 300 GHz (0.1 cm) arasındaki frekansları kapsar. Mikrodalgalar elektromanyetik dalga olarak yayılırlar, radarlarda, mikrodalga fırınlarında, cep telefonlarında, kablosuz internet erişiminde, Bluetooth kulaklıklarda, mağaza güvenlik sistemlerinde, mikrodalga frekansları kullanılır. "Mikrodalga" sözü elektromanyetik dalganın dalga boyunun 1 metreden kısa olduğu frekansları tanımlar. Dalga boyunun 1 cm'den kısa olduğu frekanslara (30-300 GHz aralığı) "milimetrik" dalga ismi de verilir. Dalga boyunun 1 mm'den kısa olduğu frekanslara (300-3000 GHz) "submilimetrik" dalga ismi verilir.


Mikrodalgalar da iletken üzerinde ivmelendirilen yükler tarafından meydana getirilirler. Radyo dalgalarının en kısa dalga boyuna sahip olanlarıdır. Bugün yaygın olarak mikrodalga fırınları kullanılmaktadır. Pişirilecek madde üzerine gönderilen mikrodalgalar su moleküllerinin tabii dönme frekanslarının biriyle rezonansa gelir ve suya enerji aktarır. Böylece yiyecekler içten içe pişerler.

 

Elektromanyetik tayf

Elektromanyetik tayf
İsim Dalgaboyu Frekans (Hz) Foton enerjisi (eV) Aralık genişliği
Gama ışını < 0.02 nm > 15 EHz > 62.1 keV sonsuz
X-ray 0.01 nm – 10 nm 30 EHz – 30 PHz 124 keV – 124 eV 3
Ultraviyole 10 nm – 400 nm 30 PHz – 750 THz 124 eV – 3 eV 1.6
Görünür ışık 390 nm – 750 nm 770 THz – 400 THz 3.2 eV – 1.7 eV 0.3
İnfrared 750 nm – 1 mm 400 THz – 300 GHz 1.7 eV – 1.24 meV 3.1
Mikrodalga 1 mm – 1 m 300 GHz – 300 MHz 1.24 meV – 1.24 µeV 3
Radyo 1 m – 100,000 km 300 MHz – 3 Hz 1.24 µeV – 12.4 feV 8

Radyo dalgaları

Radyo dalgaları, radyo frekansı ile gerçekleşen elektromıknatıssal dalgalardır. Tel gibi somut bağlantılar kullanmadan, atmosfer içerisinde veri taşınmasına olanak tanırlar. Radyo dalgalarını diğer elektromıknatıssal dalgalardan ayıran özellikleri nisbî olarak uzun dalgaboylarıdır.

Kızılötesi ışınların önemli kullanış yerleri son yıllarda yaygınlaşmıştır. Pek çok maddenin kimyasal analizi bu tür ışınların yardımıyla gerçekleştirilmektedir. Özellikle II. Dünya Savaşı'nda yansıyıp gelen kızılötesi ışınların görünür hâle getirilmesiyle karanlıktaki cisimler fark edilmiştir. Bu tür ışınların ısı etkisini kullanan fırınlar ve cilt hastalıkları tedavisinde kullanılan lambalar yapılmıştır. Geliştirilen yeni hassas filmlerle ışık vermeden sıcak cisimlerin fotoğrafını çekmek mümkün olmaktadır. Bu tür fotoğraflar gün ışığında olabildiği gibi karanlıkta da çekilebilir. Özellikle askerî sahada kullanılması, gün geçtikçe artmaktadır.
 

 

Çok yüksek frekans

 

İçindekiler 

Tanımı

VHF'nin genel kullanımı 88–108 MHz frekasları arasında gerçekleştirilen FM radyo yayını ve UHF ile birlikte gerçekleştirilen televizyon yayınıdır. VHF, ayrıca deniz ve hava ulaşım araçlarında haberleşme amacıyla yaygın olarak kullanılmaktadır.

Ortak VHF FM radyo yayını, televizyon yayını, arazi mobil istasyonlar, aralık veri iletişimi, uzun radyo modemler, deniz haberleşme, hava tarfik kontrol iletişimi, hava navigasyon sistemlerinde (DME, ILS, VOR) kullanılır.

Hava navigasyon sistemlerinde VHF haberleşme sistemi görüş hattı mesafesindeki iletişimi sağlar. Uçaklar arasındaki ya da yer istasyonlarıyla uçaklar arasındaki haberleşmeyi sağlar. Temel prensip, alıcı ve verici de antenin anteni görmesidir.
VHF, radyo kanalı ses ve veri iletişiminde alma ve gönderme için kullanılır.

VHF haberleşme sisteminde 118,0 MHz ile 136,975 MHz arasında işlem yapar. Bazı istasyonlar arasında 8,33 kHz’lik bir boşluk frekansı mevcuttur. Bu frekans aralıkları
 

  • 118.000 - 121.400 kHz
  • 121.600 - 123.050 kHz
  • 123.150 - 136.475 kHz‘tir.

Yayılması

RF dalgaları belli bir kesim frekansından sonra iyonosfer tabakasından yer yüzüne yansımak yerine bu tabakanın içinden geçmeye başlarlar. İşte bu kesim frekansı kısa dalganın yayıldığı yüksek frekans (YF) aralığının bitişini ve ÇYF aralığınının başlangıcını belirler.

Kısa dalga bandında radyo dalgaları iyonosferden yansıyarak Dünya'nın çevresini bile dolaşabilirken ÇYF dalgaları bu tabakadan yansımadıkları için bu bantta asıl olarak mevcut olan karasal dalgalardır. Fakat ÇYF'nin önemli bir avantajı, çoğu kısa ve orta dalga bantlarında mevcut olan atmosferik gürültünün azlığıdır. Zaten genel olarak frekans bu bantların üzerine çıktıkça atmosferik gürültü azalır. Burada atmosferik gürültüye arabaların ateşleme sistemlerinin yarattığı gürültüler gibi nispeten düşük frekanslı gürültüleri de ekleyebiliriz. Kısa mesafeli haberleşmeler dışında bazı nadir oluşan durumlarda bu menzil artabilir. Bu da genelde iyonosferin kesim frekansını ÇYF frekanslarına taşıyacak kadar yoğunlaşması ya da troposferde oluşan sıcak-soğuk hava değişiklikleri neden olabilir. Ama bu durumlar çok nadir meydana gelir. Genel olarak ÇYF, kısa mesafeli haberleşmeler için uygundur ve en iyi performansını bir birini arada engel olmadan gören istasyonlar arasında yapılır.
 

ÇYF de iletim aralığını bulabilmek için Dünya üzerinde görüş ufuk mesafesi heasplanır.

mesafe(mil) = (1,5×(Af))(1/2)
Af=antenin yüksekliği

mesafe= (12,746×(Am))(1/2)
Am= antenin metre olarak yüksekliği

ÇYF ile haberleşme

Kontrol paneli seçilen frekans sinyalini verici-alıcıya gönderir. Ses kontrol paneli REU’ya (Uzak Elektronik Ünite-Remote Electronic Unit) radyo kanalı seçim sinyallerini gönderir ve REU’dan ses kontrol sinyali alır. Gönderme işlemi sırasında mikrofon ses ve PTT (Push-to-Talk, bas konuş) sinyalleri REU üzerinden ÇYF verici-alıcıya gider. Verici-alıcı, mikrofondan gelen ses sinyalini verici alıcıda üretilen RF taşıyıcı modüle etmek için kullanır.

Verici-alıcı modüleli RF sinyali diğer uçak ve yer istasyonlarına gönderilmesi için antene iletir. Gönderme sırasında FDAU (İng. flight data acquisiton unit, "uçuş veri edinme ünitesi") verici-alıcıdan bir PTT sinyali alır. FDAU, bu PTT sinyalini gönderme durumunu kaydetmek için anahtar işaret olarak kullanır.

Alma işlemi sırasında anten modülasyonlu RF sinyalini alır ve transceivera gönderir. Verici-alıcı RF taşıyıcıdan sesi demodüle eder. Alınan ses ÇYF verici-alıcıdan REU yoluyla uçuş dahili telefon hoparlörlerine ve kulaklıklara gider.

ÇYF anteni

ÇYF anteni ÇYF verici-alıcısından aldığı RF sinyali diğer uçak ve yer ÇYF iletişim sistemlerine gönderir. Anten, aynı zamanda gelen RF sinyallerini alır ve bunları ÇYF transceivera gönderir. Verici-alıcı, RF taşıyıcı sinyalden ses sinyalini ayırır ya da demodüle eder.

ÇYF antenler, her uçakta aynı sayıda olmamakla birlikte iki-üç adet olabilir. Uçakta bulunan ÇYF haberleşme sistemi sayısına göre ÇYF anten sayısı da değişiklik gösterir.

Avantaj ve dezavantajları

Avantajları

Tek frekans ağı (SFN) teknolojisi sayesinde aynı kanaldan yayın yapan farklı noktalardaki sayısal yayınlar birbirlerini bozmak yerine kuvvetlendirdiğinden bu sayede enterferans sorunu ortadan kalkar, frekansların etkin ve verimli kullanılması sağlanır, DVB-H yayınlarına uyumlu el cihazlarına ve cep telefonlarına yönelik televizyon yayınları iletilebilir. Karasal sayısal televizyon yayıncılığında kullanılan televizyon vericilerinin daha az güç harcayarak aynı alanı kapsaması sağlar. Böylece insan sağlığını tehdit eden elektromanyetik kirlilik azaltılmış olacak. ÇYF nin en önemli özelliği Analog yayınlarda, sıcak havalarda İyonosferin gösterdiği özellikten yararlanarak,Atmosferik yansıma sayesinde normal kapsama alanından daha uzaklara kadar yayılabilir.Bu duruma örnek olarak Ankara da yaşayan bazı kişilerin sıcak yaz aylarında ÇYF taraması yaptıklarında bazı Rus televizyon kanallarını tuturdukları bu duruma kanıt sayılabilir.

Dezavantajı

Uydu alıcıları Çanak antenle yönlendirdiğiniz farklı uydularda birçok ülkelerin yerel özel şifreli şifresiz tüm içeriklerini izlemeye olanak tanır. Karasal Yayın ise yalnızca bulunduğunuz bölgede local vericilerin bu sisteme dönüşmesi ile alabileceğiniz yayın dır. ÇYF 5 - 12 ve UHF 21 - 69 bantları tümü sayısal içeriye geçse bile yayın adeti 220'nin üzerinde olması mümkün değildir. Uydulardan alacağınız zengin içeriği hiçbir zaman ulaşamayacak ve rakip bir sistem olamayacaktır.

Aşırı düşük frekans

 

Aşırı düşük frekans (ADF) frekans aralığı 3 ile 30 Hz arasında değişen radyo dalgası bandıdır. Amerika Birleşik Devletleri Donanması ve Sovyet/Rus Donanması tarafından dalışa geçmiş denizaltılarla iletişimde kullanılmıştır.

 

İçindekiler

 

Açıklama

Deniz suyunun iletkenliği denizaltılarla elektromanyetik iletişime büyük ölçüde engeldir. Yine de ADF frekans aralığındaki sinyaller deniz suyunun daha derinlerine ulaşmada başarılıdırlar. ADF iletişim kanallarının kullanışlılığını iki etken sınırlar: denizaltılara dev bir verici yerleştirmenin pratik imkânsızlığından kaynaklanan tek yönlü iletişim ve daha önemlisi dakikada birkaç harflik düşük veri aktarım hızı. Bu nedenle ADF sinyallerine çoğunlukla denizaltılara, farklı iletişim yollarının kullanılmasının uygun olduğu düşük derinliklere yükselme emri vermek için başvurulur.

ADF iletişiminin güçlükleri

ADF bandında yayın yapmanın başlıca güçlüklerinden biri vericinin büyüklüğüdür. Vericinin ölçüleri, üretilmek istenen elektromanyetik dalganın dalgaboyu oranında (en azından onda biri) olmak zorundadır. Örneğin 1 Hz'lik (saniyede bir vuruş) bir sinyalin dalgaboyu, elektromanyetik dalgaların söz konusu ortamda (denizsuyu için elektromanyetik dalgaların hızı, ışığın boşluktaki hızından önemsenmeyecek bir oranda daha küçüktür) 1 saniyede kattettiği yola eşit olacaktır. Rus donanmasının 3–30 Hz'lik sinyaline karşılık Amerikan Donanması günümüzde yaklaşık 50–85 Hz'lik ADF sinyalleri kullanmaktadır. Bu nedenle ADF dalgaboyu saniyede ~299 792 km'nin 50–85 Hz'e bölünmesiyle hesaplanır. Bu da 3450–5996 km aralığına karşılık gelir. (Karşılaştırmak için Dünya'nın kutuplardan ölçülmüş çapının 12715 km, ekvatordan ölçülenin ise 12756 km olduğu hatırlanabilir.) Bu dev ölçü gereksinimi ADF sinyallerinin uluslararası menzillerde iletilmesi isteği ile birleşince dünyanın tamamının yerin derinliklerine inen çok uzun kablolarla birlikte anten olarak kullanılmasını gerektirir. Çok daha küçük verici istasyonların inşa edilebilmesi için elektriksel uzatma (electrical lengthening) gibi çeşitli yöntemler kullanmak gerekir.

Amerika Birleşik Devletleri, 2004 Eylül'ünün sonlarında başlayan sökümlerine dek, biri Wisconsin Chequamegon-Nicolet Ulusal Ormanı'nda diğeri Michigan Escanaba Nehri Eyalet Ormanı'nda (yapımından önce, Sanguine Projesi olarak isimlendirilmiş ancak daha sonra yatırımların küçültülmesiyle ismi de EDF Project (ADF Projesi) olarak değiştirilmiştir) olmak üzere iki vericiye sahipti. Her ikisinin bağlantılarında da zemin dipolü olarak da adlandırılan uzun mesafe güç hatları kullanılmıştır. Bu hatların kabloları çapı 22.5 ile 45 arasında değişen teller bütününden oluşuyordu. Bu yöntemin verimsizliği nedeniyle sistemi çalışır durumda tutmak için dikkate değer oranda elektrik gücü gerekiyordu.

Diğer kullanımlar

20 Hz'lik vericiler ayrıca Boru hattı denetim ölçerlerinde (İng: ) de bulunmaktadır. Gönderilen sinyaller genellikle ölçerin boru hattında sıkıştığında izlenebilmesi amacıyla kullanılır.

Kimi amatör radyocular da, ev yapımı büyük antenlerle ADF (hatta daha düşük) sinyalleri kaydedip bunları yüksek hızlarda yeniden çalarak dünyanın elektromanyetik alanının doğal dalgalanmalarının sesini yakalamaya çalışmaktadırlar. Burada manyetik bantların hızlarının yükseltilmesi sinyallerin frekansını artırarak duyulabilir ses aralığına aktarılmasını sağlar.

Doğal ADF dalgaları

Doğal ADF dalgaları yeryüzü ile iyonosfer katmanı arasında bulunur. Atmosferdeki elektronların titreşmesine yol açan yıldırımlar tarafından başlatılır. Dünya ve iyonosfer arasındaki bölgenin temel frekansına karşılık gelen dalgaboyu dünyanın çevre uzunluğuna eşittir, bu da 7.8 Hz'lik bir rezonans frekansına karşılık gelir. Bu frekans (ve daha yüksek rezonans frekansları: 14, 20, 26 ve 32 Hz) ADF aralığındaki tepe noktalarıdır ve Schumann Rezonsı olarak adlandırılır.

ADF sinyalleri kesin olmamakla birlikte Satürn'ün uydusu Titan da saptanmışlardır. Titan'ın yüzeyinin zayıf bir ADF yansıtıcısı olduğu sanılmaktadır, bu nedenle bazı teorik modellere göre ADF sinyallerinin okyanus sularının amonyakla yaptığı derin yüzeyden yansıdığı tahmin edilmektedir. Ayrıca Titan'ın iyonosferi, 1200 km yükseklikteki ana iyonesfere ek olarak 63 km yükseklikte başka yüklü parçacık katmanına sahip olmasıyla Dünyanınkinden çok daha karmaşık bir yapı gösterir. Bu bir anlamda Titan'ın atmosferinin titreşen iki ayrı bölgeye ayrılması demektir. Yoğun yıldırımların gözlemlenmeyişi Titan'ın doğal ADF dalgalarının kaynağı hakkında belirsizliklere yol açar.

Magnetarlar, Güneş'in görünür ışık tayfında yaptığı ışımanın 100.000 katına denk bir güç çıkışıyla ADF dalgası yayarlar. Yengeç Bulutsusundaki pulsar 30 Hz frekansında , bu güçte ışımaktadır. Bu frekanstaki ışıma, yıldızlar arası ortamın plazma frekansının altındadır, böylece yıldızlar arası ortam bu ışımaya opaktır ve ışıma Dünya'dan
 gözlemlenemez.

Düşük frekans

Düşük frekans (LF veya LW), uzun dalga radyo bandına verilen addır. Frekans aralığı 30-300 KHz arasıdır. Bandın AdıDalga boyunun 1000 km ile 100 metre arasında olmasından gelmektedir.Lamda formülüne göre dalga boyu, frekans düştükçe yükselir bu hesaba göre Lamda=300/Frekans tır.Uzun Dalga Radyo teknolojisinde kullanılan en eski band tır, bu radyo dalgaları Troposfer tabakasından yansıyarak ilerler bu sayede Orta Dalga ve Kısa Dalganın bir kısmı daki gibi gündüzleri yayın kesilmesi yaşanmaz. Bazı ülkeler sonradan VLF gibi çok uzun dalga denemelerine rağmen LF deki kadar başarılı ses iletimi sağlayamamışladır,1895'te Nikola Tesla telsiz sinyallerini 50 mil uzaktaki mesafeye göndermeyi başarmıştır,böylece ilk radyo yayınını kendisi yapmıştır LF(uzundalga)nin İkinci kullanım alanı Denizcilik haberleşmesinde olmuştur,Radyo patentini satın alan Guglielmo Marconi bir gemide geliştirdiği radyo ile kıyıda bulunan hizmetçisine kablosuz telgraf aracılığıyla 3 tane S harfi yolladı. Mignani'nin asistanı da sinyali aldığı zaman ateş edecekti.. Marconi 3 S'i yollama komutunu verdiğinde yeryüzünde ilk defa deniz üzerinde Uzundalga radyo dalgaları yayıldı ve alıcıya ulaştı. Alıcıya ulaştığını gören hizmetçi Mignani tetiği çekti. Deney başarılıydı. Böylelikle ilk denizlik haberleşmesi başarılı oldu, fakat Marconin yaptığı icat Nikola Teslanın icadının yanında bir hiç ti.Nikola Tesla bir deneyinde Radyo dalgaları ile 20 mil uzaklıktaki ampülleri yakmayı başarmıştır[60 metrelik direğin etrafında, 22,5 metre çapında, hava çekirdekli transformatörü yaptı. İç kısımdaki sekonder 100 sarımlı ve 3 metre çapındaydı. Üreticisi, istasyondan birkaç mil uzaklıkta bulunan enerjiyi kullanırken, Nicola Tesla ilk insan yapımı şimşeği oluşturdu. Bir direğin tepesindeki 1 metre çaplı bakır küreden, 30 metre uzunluğunda, kulakları sağır eden şimşekler çaktı. Ufka kadar gök gürültüsü işitildi. 100 milyon Volt değerinde gerilim kullanılıyordu. İlk denemesinde, vericideki güç jeneratörünü yaktı. Fakat tamir ederek 26 mil uzağa, gücü telsiz ile iletebilinceye dek deneylerine devam etti. O uzaklıkta, toplam 10 kW'lık 200 tane akkor ampulü yakmayı başardı. Daha sonra, kendi patentleriyle meşhur olan Fritz Lowenstein, Nicola Tesla'nın yardımcısı iken bu gösterişli başarıya şahit oldu.] Daha sonraları Radyo Teknolojisi diğer mucitler tafından geliştirilerek bu günkü halini almıştır O zamandan bu zamana Uzun Dalga yayınları sürmektedir.

Orta frekans

Elektromanyetik spektrumda orta frekansın yeri.

Orta frekans (Medium frequency - MF), 300 kHz ile 3 MHz'e kadar bir aralık içinde bulunan radyo frekanslarının (RF) ITU tanımıdır.[1] Bu grubun bir kısmı orta dalga (MW) AM yayın bandında yer almaktadır. Dalga boyları bir ile on hektometre (100 m - 1000 m) arasında değiştiğinden hektometre bandı veya dalgası olarak da bilinir. Yüksek frekanslardaki ilk bant yüksek frekans (HF) bandı olarak bilinir iken hemen altı MF bandı, bunun da altındaki frekanslar, düşük frekans (LF) olarak isimlendirilir. Orta frekans; AM radyo yayıncılığı, seyir radyofarları ve denizcilikte gemi ve kıyı iletişimi için en çok kullanılan frekans aralığıdır.


Kaynakça

  1. ^ "Rec. ITU-R V.431-7, Nomenclature of the frequency and wavelength bands used in telecommunications". ITU.

Süper düşük frekans

Süper düşük frekans (İngilizce: Super low frequency) SLF 30 hertz ile 300 hertz arası radyo frekanslarıdır. Dalga boyları 1.000 ila 10.000 kilometredir. Ses iletiminde kullanılırlar. AC (Alternatif Akım) dalgaları olan 50 ve 60 hertz'de bu kategoriye girer.

Günümüzde bilgisayarlar radyo kartları, düşük maliyeti ve küçük boyutları sebebiyle bu frekansta alım yapan radyo alıcıları ile donanmaya başladılar. Bir bataryadan veya antenden alımı yapılan sinyal, yazılımdaki hızlı fourirer dönüşümü (FFT) ile okunur ve ses dalgalarına dönüştürülür.

Süper yüksek frekans

Süper yüksek frekans (İngilizce: Super high frequency ya da SHF) 3 GHz ile 30 GHz aralığındaki radyo frekansları için Uluslararası Telekomunikasyon Birliği'nin (ITO) önerdiği tanımlamadır. Dalgaboyları on ile bir santimetre arasında değiştiği için bu bant aralığına santimetre bandı veya santimetre dalgası da denir. Bu frekanslar mikrodalga bandına girmektedir. Mikrodalgaların küçük dalga boyu onların dar ışınlar halinde toplanarak parabolik antenler vasıtasıyla alınmasına olanak tanır, böylece noktadan-noktaya iletişim, veri bağlantıları ve radarlar için kullanılabilir. Bu frekans aralığı radar vericilerinde, mikrodalga fırınlarda, kablosuz LAN, cep telefonları, uydu iletişimi, mikrodalga radyo röle bağlantıları ve çok sayıda kısa menzilli karasal veri bağlantıları için kullanılır.

Ultra düşük frekans

 

Ultra düşük frekans (Ultra low frequency (ULF)) 300 hertz ile 3 kilohertz arasındaki elektromanyetik dalgaların frekans aralığı için kullanılan ITU tanımıdır.[1] Manyetosfer bilimi ve sismolojide alternatif tanımları ile birlikte kullanılmaktadır.[2]

ULF frekans bandındaki dalgaların birçok tipi manyetosfer ve yerde gözlenebilir. Bu dalgalar Dünya'nın yakın plazma ortamında önemli fiziksel süreçleri temsil ederler. ULF dalgalarının hızı genellikle ortam manyetik alanı ve plazma kütle yoğunluğuna bağlıdır ve Alfvén hızı ile ilişkilidir.
Bu frekans aralığı dünyaya nüfuz edebildiğinden madenlerde iletişim için de
 kullanılmaktadır.[3]


Kaynakça

  1. ^ "Rec. ITU-R V.431-7, Nomenclature of the frequency and wavelength bands used in telecommunications". ITU. http://www.itu.int/dms_pubrec/itu-r/rec/v/R-REC-V.431-7-200005-I!!PDF-E.pdf. Erişim tarihi: 20 February 2013. 
  2. ^ V.A. Pilipenko, "ULF waves on the ground and in space", Journal of Atmospheric and Terrestrial Physics, Volume 52, Issue 12, December 1990, Pages 1193-1209, ISSN 0021-9169, DOI:10.1016/0021-9169(90)90087-4.
  3. ^ HF and Lower Frequency Radiation - Introduction

Çok düşük frekans

 

Çok düşük frekans (Very low frequency ya da VLF) 10 ila 100 kilometre arasındaki dalga boyları ve 3 kHz ile 30 kHz frekans aralığındaki radyo frekansları için kullanılan ITU tanımıdır.[1] Radyo spektrumunun bu bandında yeteri kadar bant genişliği olmadığı için ses iletimi amacıyla oldukça elverişsizdir ve sadece düşük veri hızı kodlu sinyaller kullanılmaktadır. VLF bandı bazı radyo seyrüsefer hizmetleri, yayın süresi sinyalleri olarak radyo saatlerini ayarlamak için ve güvenli askeri iletişim için kullanılmaktadır. VLF dalgalar tuzlu su içine yaklaşık 40 metre nüfuz edebildiğinden denizaltı askeri iletişim için de kullanılmaktadır.

Kaynakça

  1. ^ "Rec. ITU-R V.431-7, Nomenclature of the frequency and wavelength bands used in telecommunications". ITU.

Yüksek frekans

HF, (High Frequency, Yüksek frekans) 2 MHz - 29.99 MHz frekans aralığında, uzun mesafe ses haberleşmelerini sağlayan haberleşme sistemidir

 

Elektromanyetik alanları kullanarak havada uçan kaldıraçlar gibi.

 

İçindekiler

 

Genel Bilgi

Bu sistem uçaklar arası ve uçak –yer istasyonu arasındaki haberleşmeyi gerçekleştirir. HF sistem aynı zamanda uçak-yer istasyonu arasındaki veri haberleşmesini sağlar. HF sistemi 2 MHz - 29.999 MHz aralığındaki havacılık frekans aralığında işlem yapar.

Yayılma Özellikleri

Sistem haberleşme sinyalini yansıtmak için yeryüzü ve iyonosferi kullanır. Yansıyan dalgalar arasındaki mesafe gün içinde işlem yapılan saate, radyo frekansına ve uçağın bulunduğu yüksekliğe göre değişir.

Uçaklarda iki adet radyo (HF 1 ve HF 2) bulunabilir ve her radyonun kendi alıcı/vericisi vardır. Kokpitte bulunan CDU’lar tarafından kontrol edilir. HF 1 için gerekli olan sinyaller MKB tarafından üretilir. HF 2 kokpitin sağ tarafında bulunan kendi kontrol paneli ile kontrol edilir. HF radyo, Singlesideband (SSB) ve iki yönlü Amplitude-Modulation (AM) ses çalışması ve data haberleşmesi sağlar.

Haberleşme sisteminin bileşenleri

  • Radyo haberleşme paneli (RCP)
  • HF Transceiver
  • HF anten kuplajlayıcı
  • Ortak ya da paylaşımlı HF anten bulunur.

Radyo haberleşme paneli, (RCP) HF transceiver ayarını ve radyo kanal seçimini yapmak için seçilmiş frekans bilgisini ve kontrol sinyallerini sağlar. RCP’ler HF haberleşme radyo kanallarından herhangi birinin seçilmesi ve frekans kontrolü için kullanılabilir. HF transceiver bilgi gönderir ve alır. Transceiver iletim devreleri uçuş dahili ses sistemini kullanarak RF taşıyıcı sinyali modüle eder. Bu ses bilgisi diğer uçaklar ve yer istasyonlarına gider. Alıcı devreler ses sinyalini ayırmak için alınan RF taşıyıcı sinyalini demodüle eder. Alınan ses sinyali uçuş ekibi ya da uçak sistemleri tarafından kullanılır.

Sistemin Çalışması

HF anten kuplajlayıcı anten empedansını HF frekans aralığı üzerindeki transceiver çıkışına uygunlaştırır. İletim modunda anten kuplajlayıcı modülasyonlu RF sinyalini transceiverdan alır ve bu sinyali antene gönderir. Alıcı modunda ise anten kuplajlayıcı modülasyonlu RF sinyalini antenden alır ve transceivara gönderir. HF anten ses ile modüle edilmiş RF sinyalleri alır ve gönderir.

Kontrol paneli seçilen frekans bilgisini ve kontrol sinyallerini transceivera gönderir. Ses kontrol panelinin REU’ya gönderdiği sinyaller;

  • HF radyo seçim sinyali
  • Alınan sesin kontrolü
  • Bas konuş (PTT)

İletim sırasında ses ve PTT sinyalleri REU üzerinden HF transceivera gider. Transceiver ses sinyalini kendi ürettiği RF taşıyıcı sinyali modüle etmek için kullanır. Transceiver modülasyonlu RF sinyalini anten kuplajlayıcı üzerinden antene gönderir. Böylece sinyal diğer uçaklara ve yer istasyonlarına iletilir.

Kozmik ışın

Uzaydan sürekli olarak Dünya atmosferine giren ve çoğu kez yeryüzüne kadar ulaşan çeşitli atomaltı parçacıklar. Bu parçacıklar proton veya helyum çekirdeği gibi parçacıklardır. Bu parçacıkların ışın olarak nitelendirilmesi doğru değildir. Ancak bu isim parçacıkların niteliği anlaşılmadan önce kullanıma girmiş ve bilimsel dile yerleşmiştir.

 

İçindekiler

 

Tarihçe

  Dünya atmosferinde  küçük ölçüde de olsa iyonizasyon saptanmaktadır. Henri Becquerel'in (1852-1908) radyoaktiviteyi keşfetmesinden sonra, bu iyonizasyondan radyoaktif elementler, özellikle radon gazı sorumlu tutuluyordu. Ancak, kimi bilim insanları bu açıklamadan tatmin olmuyorlardı. Çünkü 20. yüzyılın başlarındaki sınırlı olanaklarla deneyler yapılıyor ve atmosferdeki radyoaktivitenin yükseklikle arttığı ölçülüyordu. Oysa, şayet radyoaktivite Dünya kabuğundaki elementlerden kaynaklansaydı, yükseklerde radyoaktivitenin azalması gerekirdi. Öte yandan, atom ağırlığı 222 olan radon bütün gazların en ağırıydı ve atmosferin yüksek kesimlerinde derişimi alt kesimlere göre çok daha az olmalıydı.

Avusturyalı bilim adamı Victor Francis Hess (1883-1965) 1912 yılında balonla 5300 metre yükseklikte radyoaktivite ölçtü ve bu rakımda radyoaktivitenin deniz seviyesine göre 2 defa daha fazla olduğunu keşfetti. Bu ölçüm için Hess ölçüm cihazlarını geliştirmiş, ölçüm sırasında ise, o günkü teknolojinin imkânları içerisinde, yaşamını tehlikeye atmıştı. Hess böylece atmosferdeki iyonizasyondan Dünya’daki radyoaktif elementlerin sorumlu olmadığını buldu. Üstelik, Hess deneyini Güneş tutulması sırasında da tekrarlayarak, iyonizasyondan Güneş’in de sorumlu olmadığını buldu. Hess bu buluşuyla 1936 yılında Nobel fizik ödülünü aldı.

İyonizasyona sebep olan etkinin uzay kaynaklı olduğu Amerikalı ünlü bilim adımı Robert Andrews Millikan (1868-1953) tarafından da teyit edildi. Zaten bu etkiye kozmik ışın adını veren de Millikan'dır.

Kozmik ışınların niteliği

Kozmik ışınların uzayda hangi koşullarda oluştuğu tam olarak anlaşılamamıştır. Bilinen bu ışınların yüklü parçacıklardan oluştuğu ve Dünya üzerinde elde edilemeyecek çok yüksek enerjilere sahip olduğudur. Bu güne kadar ölçülen en yüksek enerji tek bir parçacık için 3•1020 ev dir. (Yani yaklaşık 50 J.) Gerçi, Güneş kaynaklı kozmik ışınlar da vardır. Ama Güneş kaynaklı ışınlar bu denli yüksek enerjilere çıkamamaktadırlar.

Kozmik ışınlar iki sınıfta incelenmektedir. Birincil kozmik ışınlar doğrudan yer yüzüne ulaşan çok yüksek enerjili kozmik ışınlardır. Ancak kimi kez kozmik ışın atmosferden geçerken atmosferdeki gaz atomlarıyla çarpışmaktadır. Bu durumda parçacık reaksiyona girerek başka parçacık haline gelmektedir. Bu durumda yere ulaşan kozmik ışınlara ise ikincil kozmik ışın denilmektedir. İkincil kozmik ışınların enerjileri daha düşüktür.

Birincil kozmik ışınlar genellikle hidrojen veya helyum çekirdeklerinden oluşur. Hidrojen çekirdeği yani proton kozmik ışınların % 90 ını, helyum çekirdeği, yani alfa parçacığı (α) ise % 9 unu meydana getirir. Bütün diğer çekirdekler ve elektronlar ise geri kalan % 1 in içindedir. (Buradaki oranlar sayı oranlarıdır.) Bu oranlar genellikle yıldız yüzeylerinde gözlemlenen element bolluklarına denktir.

Buna karşılık, ikincil kozmik ışınlarda farklı bir dağılım vardır ve ikincil kozmik ışınlarda lityum, berilyum ve bor gibi doğada az bulunan bazı atom çekirdeklerine de rastlanır. Yine ikincil ışınlarda kısa yarı ömre sahip olup, bir arada mezon adı verilen bazı parçacıklara da rastlanır. (muon, pion, kaon.)

Kozmik ışınlarda yön seçimi

Kozmik ışınlar Dünya’ya uzayın her yönünden gelirler. Fakat elektriksel bakımdan yüklü olduklarından, Dünya manyetik alanının etkisi altında kalırlar. Bunun sonucu kozmik ışınların manyetik kutup bölgelerinde daha yoğun olmasıdır. Kutup bölgelerindeki kutup fecri ya da kutup ışıkları denilen olay kutup bölgelerinde yoğunlaşan kozmik ışınlardan meydana gelir.

Kozmik ışınlar ve bilimsel araştırmalar

  • 1936 yılında muon ve 1947 yılında pion kozmik ışın içinde saptanmışlardır. (O tarihlerde henüz parçacık hızlandırıcılar pion ya da muon elde edecek kadar güçlü değillerdi)
  • Bazı atom altı parçacıkların yarı ömürleri çok kısadır. İkincil kozmik ışın olarak üreyen bu parçacıkların oluştukları yükseklikten yeryüzüne ulaşıncaya kadar
    bozunuma uğramaları beklenir. Oysa, durum böyle değildir ve bu parçacıklar yer yüzünde rahatlıkla saptanabilmektedirler. Bu durum Albert Einstein’in (1879-1955) özel görecelik yasasının bir sonucudur. Çok yüksek hızla hareket eden parçacıkta zaman Dünya ölçülerine göre yavaşlamaktadır. Bir başka değişle kozmik ışınların incelenmesi özel görecelik yasasının kanıtlarından birini vermektedir.
  • Birincil kozmik ışınlar atmosferdeki nitrojen atomlarına çarparak karbon elementinin az bulunur C 14 izotopunu üretmektedirler.

Radyo aktif olan bu gaz atmosferdeki karbon diyoksit içerisinde eser miktarda mevcuttur. Ama yer yüzünde bozunmaktadır. Bu sebeple C 14 ten
arkeolojik tarihlendirmede  yararlanılmaktadır. (Yarı ömür (Bozunum))

 

Ayrıca bakınız

 

 

Hiçbir yazı/ resim  izinsiz olarak kullanılamaz!!  Telif hakları uyarınca bu bir suçtur..! Tüm hakları Çetin BAL' a aittir. Kaynak gösterilmek şartıyla  siteden alıntı yapılabilir.

 © 1998 Cetin BAL - GSM: +90  05366063183 - Turkiye / Denizli